Bioinformatics with Park-Kleis 기본 콘텐츠로 건너뛰기

라벨이 오즈비검정인 게시물 표시

오즈비의 신뢰구간

 오즈비에 관한 통계적 추론 표본크기가 작을 때 오즈비의 표본추출분포는 비대칭적이기 때문에 오즈비에 대한 통계적 추론은 θ  를 자연로그 변환한 log( θ  )를 이용한다. 두 변수 X , Y  가 서로 독립일 때,  θ = 1 ➞ log( θ  ) = 0 앞선 글에서 행이 바뀌거나 열이 바뀌면 오즈비는 역수가 되는 것을 살펴보았다. 마찬가지로 로그 오즈비는 행의 역수 혹은 열의 역수가 그 부호를 바꾼다는 의미에서 0에 대하여 대칭이다. 예를 들어, θ  = 2 ➞ log(2) = 0.69 2의 역수 = 0.5 θ  = 0.5 ➞ log(0.5) = -0.69 따라서 절대값이 같은 두 log( θ  )는 같은 정도의 연관성을 의미한다. 오즈비의 로그 변환인 log( θ  )는  θ  의 분포보다 더 정규분포에 가까운 표본추출분포를 갖는다.  표본크기가 커지면 log( θ  )의 표본분포는 평균이 log θ  이고 다음과 같은 표준편차를 갖는 정규분포로 수렴한다. $$ SE=\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}} $$ 따라서 각 칸의 도수가 증가할수록 표준편차는 감소한다.  앞선 글(오즈비의 성질)에서 사용했던 표를 다시 가져와서 신뢰구간을 구해보겠다. Infarction Yes No Total Drug Used 28 41 69 Never 35 132 167 Total 63 173 236 log θ  의 왈드 신뢰구간은 다음과 같다. $$ log \hat{\theta} \pm ...

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...