Bioinformatics with Park-Kleis 기본 콘텐츠로 건너뛰기

라벨이 일반화선형모형인 게시물 표시

GLM 일반화선형모형의 성분

 모든 GLM은 세 개의 성분이 있다. (1) 랜덤성분 random component  - 반응변수 Y 를 정의하며, 반응변수 Y에 대한 확률분포를 가정한다. (2) 선형예측식 linear predictor - 설명변수(=독립변수) 들을 명시함. 변수들이 선형식의 우변에 다음과 같은 형태로, 예측변수들의 선형식으로 들어가는 것을 의미한다. $$ \alpha+\beta_{1}x_{1}+\cdots +\beta_{n}x_{n} $$ 모형에 대한 통계적 추론은 독립변수들의 관측값들을 고정된 값으로 간주한 조건부 추론을 하게 됨. (3) 연결함수 link function - Y에 대한 확률분포의 기댓값 E(Y)는 설명변수(=독립변수)들의 값에 따라 달라진다. $$ g(\mu)=\alpha +\beta_{1}x_{1}+\cdots +\beta_{n}x_{n} $$ 여기에서 연결함수는 "g" 로 랜덤성분과 설명변수들의 선형예측식을 연결하는 함수다. ✔ 연결함수의 가장 간단한 형태는 $$ g(\mu)=\mu $$  이 연결함수는 평균자체를 모형화하므로 항등연결함수 identity link function 라고 한다. $$ \mu=\alpha +\beta_{1}x_{1}+\cdots +\beta_{n}x_{n} $$ 이 형태는 연속형(=양적) 반응변수에 대한 보통의 회귀모형 형태다. 일반적인 선형회귀(linear regression)이라 생각하면 된다. ❗다른 연결함수를 사용하면 µ 를 설명변수의 비선형식 으로 표현이 가능하다. ✔ 예를 들면 아래 식은 평균의 로그 변환된 값 을 모형화한 것이다. $$ g(\mu)=log(\mu) $$  로그함수는 양수에 대해서 정의된다. 로그 연결함수는 µ   가 도수를 나타내는 자료와 같이 양의 값을 가질 때 적절히 사용가능하다. 아래 식은 로그선형모형이라 부른다. $$ log(\mu)=\alpha +\beta_{1}x_{1}+\cdots +\beta_{n}x_{n}$$ ❗아래 연결함수는 오즈...