Bioinformatics with Park-Kleis 기본 콘텐츠로 건너뛰기

라벨이 오즈비인 게시물 표시

McNemar Test (맥니마 검정법) - (1) 이항형 대응쌍에 대한 종속비율들의 비교

 두 표본이 있다.  한 표본의 개체와 다른 표본의 개체가 짝지어진 경우의 범주형 반응변수를 비교하고 싶을 때, 두 표본의 반응변수들을 대응쌍(matched pairs)이라 한다.  대응쌍의 예시로는 1) longitudinal 연구에서 동일한 대상을 시간의 흐름에 따라 반복적으로 관측하는 경우.  - ex. 식습관을 바꾸기 전의 체중과 바꾼 후의 체중 2) 같은 범주를 갖는 유사한 반응변수들이 두 개 이상 되는 설문조사의 경우.  - ex. 환경 개선을 위해 자발적으로 (1) 더 높은 세금을 지불할 의향이 있는지, (2) 생활수준 긴축을 받아들일 의향이 있는지.  Belt-Tightening Higher tax Agree Disagree Total Agree 227 132 359 Disagree 107 678 785 Total 334 810 1144 위 표에서 행의 marginal counts (359, 785)는 더 높은 세금을 지불할 의향이 있는가의 도수,  열의 marginal counts (334, 810)은 생활수준을 긴축할 의향이 있는가의 도수이다. ❗이 두 가지 질문에 "예"라고 응답할 확률은 어떻게 비교할 수 있는가? (1) 더 높은 세금을 지불할 의향이 있는가? "예"라고 대답한 표본 비율 = 359/1144=0.314 (2) 생활수준 긴축의 의향이 있는가? "예"라고 대답한 표본 비율 = 334/1144=0.292  ❓ 표본 오즈비 는? $$ \frac{227\times678}{132\times107}=10.9 $$ ➞ 두 질문에 대한 의견에는 강한 상관성이 존재한다. 질문 1에 "예"라고 응답할 확률은  $$ P(Y_{1}=...

삼차원 분할표와 심슨의 역설 Simpson's paradox ; 오즈비

  범주형 변수 분석에는 2X2 분할표가 간단하여 많이 사용되는데, 간단한 자료만 있는 것이 아니라 복잡한 자료들이 참 많다.. 3X3 분할표도 굉장히 많이 이용되는데, 예시를 살펴보고 삼차원 분할표는 어떻게 분석할 수 있는지 살펴보도록 하겠다. 📋 3X3 분할표 는 보통 아래와 같이 생겼다. Victims' race Defendants' race 선고 Rate(%) Yes No 백인 백인 53 414 11.3 흑인 11 37 22.9 흑인 백인 0 16 0.0 흑인 4 139 2.8 합 백인 53 430 11.0 흑인 15 176 7.9 위 표에서 먼저 합을 보자. 백인이 사형선고를 받은 비율은 11%, 흑인이 사형선고를 받은 비율은 7.9%이다. 이는 백인이 흑인에 비해 사형선고의 비율이 높다는 의미이다. 뭔가 그동안 보아왔던 것과는 좀 다른 결과이지 않은가? ❗설명변수인 X  와 반응변수인 Y  의 관계를 통계분석 시 주의해야 할 점은 두 변수에 동시에 영향을 주는 " 교란변수 confounding " 이다. 이를 공변량 covariates 이라고도 하는데, 앞으로는 이런 변수들을 공변량이라 하겠다. 🌟 공변량은 설명변수 X  와 반응변수 Y 모두에 연관되어 있다. 굉장히 매우 중요한 문장이다. 📋예를 들어 보자. 흡연자와 같이 사는 비흡연자에게 간접흡연이 미치는 영향을 살펴보는 연구를 하고자 설명변수로는 배우자가 흡연자인지의 여부, 반응변수로는 폐암 발생 여부로 지정했다고 하자. X = 흡연자와의 동거 여부 Y = 폐암 ...

오즈비의 성질 Odds Ratio

  오즈비는 임상에서 굉장히 많이 사용되는 개념이기도 하고, 로지스틱 회귀에서도 모형의 해석에서 굉장히 중요한 개념이다. 오즈비는 처음에는 이해하기 어렵지만, 이해를 하고나면 그 다음부터 쉽게 해석할 수 있고, 오즈비가 가진 여러 성질들도 이해할 수 있다.  📋오즈비의 성질을 살펴보기 위해 아래와 같은 표를 만들었다. Infarction Yes No Total Drug Used 28 41 69 Never 35 132 167 Total 63 173 236 📉 먼저 위 표를 바탕으로 상대위험도(Relative Risk)를 구해보자. ✔ Drug used 그룹 에서 Infarction Yes의 비율을 구해보자  ⇨ Infarction Yes : 28/69 =  𝛑 1 ✔ 이번에는 Drug never used 그룹 에서 Infarction Yes의 비율을 구해보자  ⇨  Infarction Yes  : 35/167 =  𝛑 2 ❗이 경우 상대위험도(Relative Risk; RR) 는 다음과 같다. RR =  𝛑 1  /   𝛑 2  = ( 28/69) / ( 35/167) 📈 이번에는 Odds를 구해보자 ✔ Drug used 그룹 의 Odds = Odds1 라고 한다면  Odds1 =  𝛑 1 /(1- 𝛑 1 ) = 28/41 ✔ Drug never used 그룹 의 Odds = Odds2 라고 한다면  Odds2 =  𝛑 2 /(2- 𝛑 2 ) = 35/132 ❗ 따라서 오즈비(Odds Ratio) 는 다음과 같다.  OR = (28*132)/(41*35) ...

Odds Ratio and Relative Risk ; 오즈비와 상대위험도 part. 2

 지난 글에서 2X2 분할표에서 많이 사용되는 오즈비와 상대위험도의 개념에 대해서 살펴보았다. 그 중에서도 지난 글에서는 오즈비를 사용할 수밖에 없는 경우에 대해 살펴보았다.  상대위험도가 직관적으로 이해하기 쉽고 위험비에 대한 쉬운 해석을 가능하게 하지만, 그럼에도 불구하고 보건 or 의학 계열에서 오즈비를 많이 사용 할 수밖에 없는 이유에 대해 살펴보았다. 또한 오즈비와 상대위험도는 가끔 동일하게 해석되기도 한다. (자세한 내용은 이전 글로..) 그럼 이번 글에서는 오즈비와 상대위험도를 동일하게 해석할 수 있는 경우 에 대해 살펴보도록 하겠다. 먼저 다음과 같은 오즈비의 특성을 이해해야 한다. 오즈비의 중요 특성: 상대적인 위험도를 과장하는 측면 이 있다. 이는 굉장히 중요한 오즈비의 특성인데, Relative Risk 값보다 항상 큰 값을 가진다. 그리고 이는 해당 Event가 흔하게 일어날 수록 더욱 더 과장 된다. 📋예를 들어 보자. 따듯한 차를 마셨을 때와 방안 온도의 차를 마셨을 때 체온이 상승하는지 아니면 그대로 유지되는지에 대해 조사하고 다음과 같은 분할표를 얻었다.   체온 상승 유지 Total Warm tea 90 10 100 Normal temp 20 180 200 먼저 Relative Risk 상대위험도 를 구해보자. $$ \frac{90/100}{20/200} = 9 $$ 이번엔 Odds Ratio 오즈비 를 구해보자. (유도과정은 이전 글 참고) $$ \frac{90 * 180}{20 * 10} = 81 $$ 이번엔 방금 구한 상대위험도와 오즈비를 해석해보자. 📉 RR : 상대위험도는 9로, 이는 따듯한 차를 마신다면 체온이 상승할 확률이 방안 온도의 차를 마셨을 때보다 체온이 상승할 확률...

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...