Odds Ratio and Relative Risk ; 오즈비와 상대위험도 part. 2 기본 콘텐츠로 건너뛰기

Odds Ratio and Relative Risk ; 오즈비와 상대위험도 part. 2

 지난 글에서 2X2 분할표에서 많이 사용되는 오즈비와 상대위험도의 개념에 대해서 살펴보았다.


그 중에서도 지난 글에서는 오즈비를 사용할 수밖에 없는 경우에 대해 살펴보았다. 

상대위험도가 직관적으로 이해하기 쉽고 위험비에 대한 쉬운 해석을 가능하게 하지만, 그럼에도 불구하고 보건 or 의학 계열에서 오즈비를 많이 사용 할 수밖에 없는 이유에 대해 살펴보았다.

또한 오즈비와 상대위험도는 가끔 동일하게 해석되기도 한다.

(자세한 내용은 이전 글로..)


그럼 이번 글에서는 오즈비와 상대위험도를 동일하게 해석할 수 있는 경우에 대해 살펴보도록 하겠다.


먼저 다음과 같은 오즈비의 특성을 이해해야 한다.


오즈비의 중요 특성: 상대적인 위험도를 과장하는 측면이 있다.


이는 굉장히 중요한 오즈비의 특성인데, Relative Risk 값보다 항상 큰 값을 가진다.

그리고 이는 해당 Event가 흔하게 일어날 수록 더욱 더 과장 된다.


📋예를 들어 보자.

따듯한 차를 마셨을 때와 방안 온도의 차를 마셨을 때 체온이 상승하는지 아니면 그대로 유지되는지에 대해 조사하고 다음과 같은 분할표를 얻었다.


 

체온 상승

유지

Total

Warm tea

90

10

100

Normal temp

20

180

200


먼저 Relative Risk 상대위험도를 구해보자.

$$ \frac{90/100}{20/200} = 9 $$


이번엔 Odds Ratio 오즈비를 구해보자. (유도과정은 이전 글 참고)

$$ \frac{90 * 180}{20 * 10} = 81 $$


이번엔 방금 구한 상대위험도와 오즈비를 해석해보자.

📉RR: 상대위험도는 9로, 이는 따듯한 차를 마신다면 체온이 상승할 확률이 방안 온도의 차를 마셨을 때보다 체온이 상승할 확률이 9배가 더 높다는 의미로 해석할 수 있다.


📈OR: 한편, 오즈비가 81라는 것은 따듯한 차를 마셨을 때 체온이 상승할 오즈가 방안 온도의 차를 마셨을 때 체온이 상승할 오즈보다 81배가 높다는 의미로 해석할 수 있다.


이 실험의 경우 상대적인 비율이 9배라는 것과 81배라는 것은 엄청난 차이가 있다. 그 비율에 있어서도 무려 9배가 차이가 난다. 오즈비 역시 상대적인 위험도를 나타내는 수치이지만 이렇게 큰 차이가 날 경우 오즈비를 상대위험도처럼 해석하면 안된다.


이러한 실험처럼 어떤 Event (이번 사례에서는 체온 상승)가 rare하지 않고 흔하게 일어나는 경우라면 그 상대적인 위험도를 매우 과장시키기 때문에 오즈비를 사용하는 것은 적절하지 않다.



📋이번에는 다음 사례를 살펴보자.

A약과 B약을 복용하였을 때 부작용이 일어날 상대위험도와 오즈비를 구해보도록 하겠다.


 

부작용

정상

Total

Drug A

2

242

244

Drug B

3

478

481


📉먼저 Relative Risk 상대위험도를 구해보자.

$$ \frac{2/244}{3/481} = 1.314 $$


📈이번엔 Odds Ratio 오즈비를 구해보자.

$$ \frac{2 * 478}{3 * 242} = 1.316 $$


역시 오즈비가 상대위험도보다 아주 약간 더 큰 값이 나왔다.

그러나 중요한 점은 오즈비와 상대위험도의 값이 매우 비슷하다는 것이다.

❗이러한 경우에는 오즈비를 상대위험도처럼 해석할 수 있다.


요약하자면, 오즈비는 직관적인 해석이 어려운 대신 상대위험도를 계산할 수 없는 사례-대조 연구에서 사용할 수 있고, 어떤 event가 일어날 사건이 희귀하다면(=확률이 작다면) 충분히 그 해석을 상대위험도로 근사하게 할 수 있다.


댓글

이 블로그의 인기 게시물

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. $$ P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 $$ 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. $$ P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n $$ 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...