통계 분석의 핵심은 무엇일까?
✅통계 분석의 목적은 여러 가지가 있지만 가장 중요한 것 중에 하나는 관측된 표본을 통해 모수를 추정하는 것이라 할 수 있다.
📋대선이 가까워지고 있는 요즘, 지지율 여론조사, 지지하는 정당 여론조사 뉴스가 굉장히 많이 올라온다. 뉴스들을 살펴보면 대략 표본은 1,000여 명 정도가 응답을 하고 여론조사 방식은 면접조사, ARS 등이 있다.
그런데, 여기서 드는 의문..
❓1,000 명 정도 되는 표본의 대답이 전체 국민들을 대변하는 여론이라고 할 수 있을까?
(가끔 표본 수가 고작 1,000 명 밖에 안되기 때문에 자기 마음에 들지 않는 여론조사 결과가 나오면 여론 조사가 잘못되었다고 판단하는 사람들도 많다. 생각보다 매우 매우 많다.)
❓표본 수가 2,000 명인 여론조사와 표본 수가 20,000 명인 여론조사 중 어떤 조사가 더 정확할까?
이는 여론 조사 설계에 따라 달라진다.
대략적으로 표본의 수가 1,000 ~ 2,000 정도면 대체적으로 여론조사 결과가 믿을만하다고 알려져 있다. 단, 표본이 전체 국민을 대변할 수 있을 정도로 표본 설계가 촘촘히 되어야 하며, 적절한 조사 방법을 이용해야 한다. 또한 편향이 생기지 않도록 설문지를 비롯해 여러 가지를 신경써야 한다.
만약 표본조사에서 33.5%가 야당 후보를 지지한다고 하면 모수 역시 대략 그 정도라고 추정할 수 있다.
✅모집단 전체를 조사하려면 비용과 시간이 너무 많이 소요되므로 비슷한 성능이라면 모집단을 대표하는 표본을 관측해 모수를 추정하는 방법이 널리 사용된다.
이렇게 미지의 모수값들은 표본을 이용해 추정하는데 그 추정법 중에 하나는 최대가능도추정법 Maximum Likelihood Estimation 이다.
"모수적 추정 방법은 반응변수에 대해 특정 확률분포를 가정한다."
가능도 검정을 할 때 많이 마주치는 문장인데, 참 이해하기 어려운 문장이다.
❗확률 분포는 여러 가지 종류가 있다.
대표적인 확률 분포로는 정규분포, 카이제곱분포, 포아송분포, 이항분포 등이 있다.
📋예를 들어 A공장에서 생산된 마스크의 불량률을 구해보고자 한다.
A공장 생산 마스크의 불량률을 구하기 위해서 전 제품을 전수조사를 할 수는 없다.
따라서 생산된 제품 중 "몇 개를 뽑아서"(=표본추출) "불량인지 아닌지"(=반응변수)를 살펴보아야 한다.
이 경우 반응변수는 ①불량 ②정상 이 두 가지의 카테고리이고 여러 번 반복하여 확인하므로 "이항분포"라는 확률분포를 가정한다.
여기에서 추정하고자 하는 모수는 "불량률(𝛑)"이다.
❓우리는 불량률을 모른다.
10개의 마스크를 랜덤으로 골랐다고 하자.
시행횟수가 n이고, 불량품의 개수를 x라고 한다면.. 반응변수가 이항분포를 따르므로
모수인 불량률을 𝛑 라고 할 때,
확률분포는 다음과 같다.
$$ _{n}\textrm{C}_{x} \pi^{x}(1-\pi)^{n-x} $$
📉 만약 표본 10개의 마스크 중 불량품의 개수가 0이라면 그 확률은 다음이 된다.
$$ P(X=0)=(1-\pi)^{10} $$
따라서 불량품의 개수가 0일 확률은 0부터 1의 값을 갖는 미지의 모수 𝛑값에 의해 달라진다.
이렇게 미지의 모수의 함수로 표현 된 표본자료의 확률을 가능도함수 Likelihood function이라고 한다.
위 예제를 이와 같이 표현하면..
10번의 시행에서 X(불량품)=0 인 불량품에 대한 이항가능도함수는 0과 1 사이의 𝛑 에 대하여 $$ l(\pi)=(1-\pi)^{10} $$ 로 정의할 수 있다.
만약
① 모수가 0이라면 (불량률이 0 이라면) $$l(0)=(1-0)^{10}=1$$
② 불량률이 0.2라면 $$l(0.2)=(1-0.2)^{10}=0.107$$
③ 불량률이 0.4라면 $$ l(0.4)=(1-0.4)^{10}=0.006 $$
이를 R을 이용하여 그림으로 나타내면 다음과 같다.
(여전히 불량률은 몰라서 𝛑로 둠)
$$ _{n}\textrm{C}_{x}(\pi)^{x}(1-\pi)^{n-x}=_{10}\textrm{C}_{4}(\pi)^{4}(1-\pi)^{6} $$
$$ l(\pi)=210( \pi )^{4}(1-\pi)^{6} $$
만약
① 모수가 0이라면 (불량률이 0 이라면) $$l (0)=210(0)^{4}(1)^{6}=0 $$
② 불량률이 0.2라면 $$ l(0.2)=210(0.2)^{4}(1-0.2)^{6}=0.088 $$
③ 불량률이 0.4라면 $$ l(0.4)=210(0.4)^{4}(1-0.4)^{6}=0.25 $$
④ 불량률이 0.5라면 $$ l(0.5)=210(0.5)^{4}(1-0.5)^{6}=0.205 $$
이를 R을 이용하여 그림으로 나타내면 다음과 같다.
모수의 Maximum Likelihood Estimator 최대가능도추정량은 "가능도함수를 최대로 만드는 모수값"으로 정의한다.
즉, 그 모수값에서 가능도함수가 최댓값을 갖는다.
(역시 이해하기 어려운 문장이다..)
다시 앞의 예로 돌아가보면..
$$ l(\pi)=(1-\pi)^{10} $$
위 가능도 함수는 X=0, 생산된 마스크 중 10개를 랜덤 선택하였을 때 불량인 마스크의 개수가 0개였을 때의 가능도함수였다. 그리고 이를 그래프로 나타낸 것은 다음과 같다.
위 그래프에서 최댓값을 갖는 모수값은 0.0이고, 최대가능도추정량은 0.0이 되는 것이다.
따라서 10 개의 표본 마스크 중에서 0개의 불량품이 있었다면 불량률 P(or파이)가 0.0일 때에 관측될 가능성이 높다는 의미이다.
두 번째 예제를 다시 살펴보면..
$$ l(\pi)=210( \pi )^{4}(1-\pi)^{6} $$
위 가능도 함수는 X=4, 생산된 마스크 중 10개를 랜덤 선택하였을 때 불량인 마스크의 개수가 4개였을 때의 가능도함수다. 그리고 이를 그래프로 나타낸 것은 다음과 같다.
위 그래프에서 가능도함수가 최댓값을 갖는 모수는 0.4이고, 따라서 10개의 마스크를 랜덤으로 뽑았을 때 불량품이 4개 발견되었다면 불량률이 0.4일 때 발견될 가능성이 높다는 의미이다.
n번 시행 중에서 x번 성공한 이항분포의 결과에서 파이의 최대가능도추정량은
$$ \hat{\pi}=\frac{x}{n} $$
이는 n번 시행했을 때의 표본비율이다.
댓글
댓글 쓰기