범주형 변수 ; Categorical Variables 기본 콘텐츠로 건너뛰기

범주형 변수 ; Categorical Variables

 범주형 변수 (categorical variables)의 정의와 예시에 대해 살펴보고 다음 글부터 범주형 변수의 분석 방법에 대해 다루고자 한다.


✅범주형 변수의 정의: 측정 단위가 여러 범주들의 집합으로 구성되어 있는 변수

범주형 변수는 질적 변수 (qualitative variables) 라고도 일컬어 진다.


📋범주형 변수의 예시

ex 1) 영화장르: 액션 - 로코 - 코미디 - 드라마

ex 2) 백신 접종 여부: 예 - 아니오

ex 3) 최종 학력: 중졸 - 고졸 - 전문대졸 - 대졸 - 대학원졸

ex 4) 행복 수준: 없음 - 가끔 - 꽤 행복 - 항상 행복



범주형 변수는 하위 세 가지 타입의 변수를 갖는다.

1. 이항변수 (Binary variables) 

    ⇨ 위 예시 2번이 해당 

    ⇨ [예 or 아니오] 혹은 [찬성 or 반대] 두 가지의 범주만을 갖는 변수들

2. 명목형변수 (Nominal variables) 

    ⇨ 위 예시 1번이 해당

    ⇨ 3개 이상의 범주를 갖고 변수들 사이에 순서에 대한 의미가 없는 변수들

3. 순서형변수 (Ordinal variable)  

    ⇨ 위 예시 3번과 4번이 해당

    ⇨ 범주들이 일정한 순서를 갖는 변수들 (순서에 의미가 있음) 


범주형 변수들을 어떻게 분석할 것인가?

    ⇨ GLM (Generalised Linear Model) 일반화 선형모형 이용함.


자세한 분석 방법들은 다음 글들에서 다루고자 한다.



댓글

이 블로그의 인기 게시물

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. $$ P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 $$ 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. $$ P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n $$ 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...

Odds Ratio and Relative Risk ; 오즈비와 상대위험도 part. 2

 지난 글에서 2X2 분할표에서 많이 사용되는 오즈비와 상대위험도의 개념에 대해서 살펴보았다. 그 중에서도 지난 글에서는 오즈비를 사용할 수밖에 없는 경우에 대해 살펴보았다.  상대위험도가 직관적으로 이해하기 쉽고 위험비에 대한 쉬운 해석을 가능하게 하지만, 그럼에도 불구하고 보건 or 의학 계열에서 오즈비를 많이 사용 할 수밖에 없는 이유에 대해 살펴보았다. 또한 오즈비와 상대위험도는 가끔 동일하게 해석되기도 한다. (자세한 내용은 이전 글로..) 그럼 이번 글에서는 오즈비와 상대위험도를 동일하게 해석할 수 있는 경우 에 대해 살펴보도록 하겠다. 먼저 다음과 같은 오즈비의 특성을 이해해야 한다. 오즈비의 중요 특성: 상대적인 위험도를 과장하는 측면 이 있다. 이는 굉장히 중요한 오즈비의 특성인데, Relative Risk 값보다 항상 큰 값을 가진다. 그리고 이는 해당 Event가 흔하게 일어날 수록 더욱 더 과장 된다. 📋예를 들어 보자. 따듯한 차를 마셨을 때와 방안 온도의 차를 마셨을 때 체온이 상승하는지 아니면 그대로 유지되는지에 대해 조사하고 다음과 같은 분할표를 얻었다.   체온 상승 유지 Total Warm tea 90 10 100 Normal temp 20 180 200 먼저 Relative Risk 상대위험도 를 구해보자. $$ \frac{90/100}{20/200} = 9 $$ 이번엔 Odds Ratio 오즈비 를 구해보자. (유도과정은 이전 글 참고) $$ \frac{90 * 180}{20 * 10} = 81 $$ 이번엔 방금 구한 상대위험도와 오즈비를 해석해보자. 📉 RR : 상대위험도는 9로, 이는 따듯한 차를 마신다면 체온이 상승할 확률이 방안 온도의 차를 마셨을 때보다 체온이 상승할 확률...