GLM의 모형진단 - GLM part. 4 기본 콘텐츠로 건너뛰기

GLM의 모형진단 - GLM part. 4

 회귀 모형 (Regression model) 을 적합하고 모형 진단을 할 때 여러 검정이 필요한데, 그 중에서도 먼저 적합도 검정에 대해서 살펴보고자 한다.


관심 있는 모형을 이라 하고, 이 모형이 잘 적합되었는지 검정을 해보자.


✅적합도 검정 (Goodness of fit test)이란? 

-포화모형에는 포함되어 있지만 간단한 모형에는 포함되지 않는 모든 모수가 0인지 검정하는 것


✔ 귀무가설: 간단한 모형 (현재 고려하고 있는 모형 = M)

✔ 대립가설: 포화모형 (가장 복잡한 모형)


유의확률이 클수록 귀무가설을 기각하지 못하기 때문에 간단한 모형을 선택하게 된다. 즉, 유의확률이 크다면 간단한 모형이 복잡모형과의 설명력에서 차이가 없으므로 간단한 모형을 사용하면 된다.


범주형 변수 4개(binary)가 있다면 모수가 4개.



적합도와 이탈도

GLM에서 적합도 검정을 위한 가능도비 통계량

1. 이탈도(Deviance) = -2[Lm-Ls] 

    Ls:포화모형의 이탈도, Lm: 간단모델의 이탈도

값이 클수록 포화모형과 비교했을 때 축소모형의 설명력이 좋지 못하다는 해석을 내릴 수 있음. P-value가 작을수록 적합결여에 대한 강한 증거가 된다.


2. 대표본의 경우 근사적으로 카이제곱 분포를 따름.


예측변수가 모두 범주형 변수인 경우, 전체 Data는 분할표의 도수로 요약할 수 있다.

잔차를 이용해 적합도를 살펴볼 수 있다.

 

LM = 모형 에서 얻은 로그 가능도함수의 최댓값

LS = 가능한 모형 중에서 가장 복잡한 모형에서의 로그 가능도함수의 최댓값


가장 복잡한 모형을 포화모형 saturated model 이라고 하고, 이 모형은 각 관측값에 대해 모수를 가지므로 완벽하게 자료를 적합시킨다.


포화모형은 모수들을 더 많이 포함하기 때문에 포화모형 하에서 구한 로그가능도함수의 최댓값 LS는 더 단순한 모형인 에서 구한 로그가능도함수의 최댓값 LM 보다 큰 값을 갖는다.


GLM의 이탈도 통계량은 다음과 같이 정의할 수 있다.

$$ 2[L_{S}-L_{M}]\sim \chi^{2},\:\;  L_{S} > L_{M} $$


이탈도 통계량의 귀무가설

- 포화모형의 모수들 중, 모형 M에 포함되지 않은 모수들이 모두 0이다.

 = 모형 이 포화모형보다 더 괜찮은 모형이다.

 = 모형 이 잘 적합되었다.

따라서 이 경우에는 P-value 값이 높을수록 관심 있는 모형 M 의 적합성이 좋다.

댓글

이 블로그의 인기 게시물

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. $$ P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 $$ 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. $$ P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n $$ 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...

Odds Ratio and Relative Risk ; 오즈비와 상대위험도 part. 2

 지난 글에서 2X2 분할표에서 많이 사용되는 오즈비와 상대위험도의 개념에 대해서 살펴보았다. 그 중에서도 지난 글에서는 오즈비를 사용할 수밖에 없는 경우에 대해 살펴보았다.  상대위험도가 직관적으로 이해하기 쉽고 위험비에 대한 쉬운 해석을 가능하게 하지만, 그럼에도 불구하고 보건 or 의학 계열에서 오즈비를 많이 사용 할 수밖에 없는 이유에 대해 살펴보았다. 또한 오즈비와 상대위험도는 가끔 동일하게 해석되기도 한다. (자세한 내용은 이전 글로..) 그럼 이번 글에서는 오즈비와 상대위험도를 동일하게 해석할 수 있는 경우 에 대해 살펴보도록 하겠다. 먼저 다음과 같은 오즈비의 특성을 이해해야 한다. 오즈비의 중요 특성: 상대적인 위험도를 과장하는 측면 이 있다. 이는 굉장히 중요한 오즈비의 특성인데, Relative Risk 값보다 항상 큰 값을 가진다. 그리고 이는 해당 Event가 흔하게 일어날 수록 더욱 더 과장 된다. 📋예를 들어 보자. 따듯한 차를 마셨을 때와 방안 온도의 차를 마셨을 때 체온이 상승하는지 아니면 그대로 유지되는지에 대해 조사하고 다음과 같은 분할표를 얻었다.   체온 상승 유지 Total Warm tea 90 10 100 Normal temp 20 180 200 먼저 Relative Risk 상대위험도 를 구해보자. $$ \frac{90/100}{20/200} = 9 $$ 이번엔 Odds Ratio 오즈비 를 구해보자. (유도과정은 이전 글 참고) $$ \frac{90 * 180}{20 * 10} = 81 $$ 이번엔 방금 구한 상대위험도와 오즈비를 해석해보자. 📉 RR : 상대위험도는 9로, 이는 따듯한 차를 마신다면 체온이 상승할 확률이 방안 온도의 차를 마셨을 때보다 체온이 상승할 확률...