McNemar Test (맥니마 검정법) - (1) 이항형 대응쌍에 대한 종속비율들의 비교 기본 콘텐츠로 건너뛰기

McNemar Test (맥니마 검정법) - (1) 이항형 대응쌍에 대한 종속비율들의 비교

 두 표본이 있다. 

한 표본의 개체와 다른 표본의 개체가 짝지어진 경우의 범주형 반응변수를 비교하고 싶을 때,

두 표본의 반응변수들을 대응쌍(matched pairs)이라 한다. 


대응쌍의 예시로는

1) longitudinal 연구에서 동일한 대상을 시간의 흐름에 따라 반복적으로 관측하는 경우.

 - ex. 식습관을 바꾸기 전의 체중과 바꾼 후의 체중

2) 같은 범주를 갖는 유사한 반응변수들이 두 개 이상 되는 설문조사의 경우.

 - ex. 환경 개선을 위해 자발적으로 (1) 더 높은 세금을 지불할 의향이 있는지, (2) 생활수준 긴축을 받아들일 의향이 있는지. 


Belt-Tightening
Higher tax Agree Disagree Total
Agree 227 132 359
Disagree 107 678 785
Total 334 810 1144


위 표에서 행의 marginal counts (359, 785)는 더 높은 세금을 지불할 의향이 있는가의 도수, 열의 marginal counts (334, 810)은 생활수준을 긴축할 의향이 있는가의 도수이다.


❗이 두 가지 질문에 "예"라고 응답할 확률은 어떻게 비교할 수 있는가?

(1) 더 높은 세금을 지불할 의향이 있는가? "예"라고 대답한 표본 비율 = 359/1144=0.314
(2) 생활수준 긴축의 의향이 있는가? "예"라고 대답한 표본 비율 = 334/1144=0.292


 ❓표본 오즈비는?
$$ \frac{227\times678}{132\times107}=10.9 $$
두 질문에 대한 의견에는 강한 상관성이 존재한다.


질문 1에 "예"라고 응답할 확률은 
$$ P(Y_{1}=1)=\pi_{11}+\pi_{12} $$

질문 2에 "예"라고 응답할 확률은 
$$ P(Y_{2}=1)=\pi_{11}+\pi_{21} $$

만약 위 두 확률이 같다면 "아니오"라고 응답할 확률도 동일하게 된다.

두 확률이 같다면 다음과 같이 표현할 수 있고,
$$ P(Y_{1}=1)=P(Y_{2}=1) $$
$$ P(Y_{1}=1)-P(Y_{2}=1)=(\pi_{11}+\pi_{12})-(\pi_{11}+\pi_{21})=\pi_{12}-\pi_{21} $$
따라서
$$ \pi_{12}=\pi_{21} $$
위 식이 성립한다면 주변동질성 Marginal Homogeneity이 존재한다고 할 수 있다.


이와 같이 대응쌍을 이루는 이항형 반응변수일 때,
주변동질성 검정법의 귀무가설은 다음과 같다.
$$ H_{0}: P(Y_{1}=1)=P(Y_{2}=1) $$
$$ H_{0}: \pi_{12}=\pi_{21} $$


댓글

이 블로그의 인기 게시물

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. $$ P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 $$ 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. $$ P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n $$ 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...

Odds Ratio and Relative Risk ; 오즈비와 상대위험도 part. 2

 지난 글에서 2X2 분할표에서 많이 사용되는 오즈비와 상대위험도의 개념에 대해서 살펴보았다. 그 중에서도 지난 글에서는 오즈비를 사용할 수밖에 없는 경우에 대해 살펴보았다.  상대위험도가 직관적으로 이해하기 쉽고 위험비에 대한 쉬운 해석을 가능하게 하지만, 그럼에도 불구하고 보건 or 의학 계열에서 오즈비를 많이 사용 할 수밖에 없는 이유에 대해 살펴보았다. 또한 오즈비와 상대위험도는 가끔 동일하게 해석되기도 한다. (자세한 내용은 이전 글로..) 그럼 이번 글에서는 오즈비와 상대위험도를 동일하게 해석할 수 있는 경우 에 대해 살펴보도록 하겠다. 먼저 다음과 같은 오즈비의 특성을 이해해야 한다. 오즈비의 중요 특성: 상대적인 위험도를 과장하는 측면 이 있다. 이는 굉장히 중요한 오즈비의 특성인데, Relative Risk 값보다 항상 큰 값을 가진다. 그리고 이는 해당 Event가 흔하게 일어날 수록 더욱 더 과장 된다. 📋예를 들어 보자. 따듯한 차를 마셨을 때와 방안 온도의 차를 마셨을 때 체온이 상승하는지 아니면 그대로 유지되는지에 대해 조사하고 다음과 같은 분할표를 얻었다.   체온 상승 유지 Total Warm tea 90 10 100 Normal temp 20 180 200 먼저 Relative Risk 상대위험도 를 구해보자. $$ \frac{90/100}{20/200} = 9 $$ 이번엔 Odds Ratio 오즈비 를 구해보자. (유도과정은 이전 글 참고) $$ \frac{90 * 180}{20 * 10} = 81 $$ 이번엔 방금 구한 상대위험도와 오즈비를 해석해보자. 📉 RR : 상대위험도는 9로, 이는 따듯한 차를 마신다면 체온이 상승할 확률이 방안 온도의 차를 마셨을 때보다 체온이 상승할 확률...