McNemar Test (맥니마 검정법) - (1) 이항형 대응쌍에 대한 종속비율들의 비교 기본 콘텐츠로 건너뛰기

McNemar Test (맥니마 검정법) - (1) 이항형 대응쌍에 대한 종속비율들의 비교

 두 표본이 있다. 

한 표본의 개체와 다른 표본의 개체가 짝지어진 경우의 범주형 반응변수를 비교하고 싶을 때,

두 표본의 반응변수들을 대응쌍(matched pairs)이라 한다. 


대응쌍의 예시로는

1) longitudinal 연구에서 동일한 대상을 시간의 흐름에 따라 반복적으로 관측하는 경우.

 - ex. 식습관을 바꾸기 전의 체중과 바꾼 후의 체중

2) 같은 범주를 갖는 유사한 반응변수들이 두 개 이상 되는 설문조사의 경우.

 - ex. 환경 개선을 위해 자발적으로 (1) 더 높은 세금을 지불할 의향이 있는지, (2) 생활수준 긴축을 받아들일 의향이 있는지. 


Belt-Tightening
Higher tax Agree Disagree Total
Agree 227 132 359
Disagree 107 678 785
Total 334 810 1144


위 표에서 행의 marginal counts (359, 785)는 더 높은 세금을 지불할 의향이 있는가의 도수, 열의 marginal counts (334, 810)은 생활수준을 긴축할 의향이 있는가의 도수이다.


❗이 두 가지 질문에 "예"라고 응답할 확률은 어떻게 비교할 수 있는가?

(1) 더 높은 세금을 지불할 의향이 있는가? "예"라고 대답한 표본 비율 = 359/1144=0.314
(2) 생활수준 긴축의 의향이 있는가? "예"라고 대답한 표본 비율 = 334/1144=0.292


 ❓표본 오즈비는?
$$ \frac{227\times678}{132\times107}=10.9 $$
두 질문에 대한 의견에는 강한 상관성이 존재한다.


질문 1에 "예"라고 응답할 확률은 
$$ P(Y_{1}=1)=\pi_{11}+\pi_{12} $$

질문 2에 "예"라고 응답할 확률은 
$$ P(Y_{2}=1)=\pi_{11}+\pi_{21} $$

만약 위 두 확률이 같다면 "아니오"라고 응답할 확률도 동일하게 된다.

두 확률이 같다면 다음과 같이 표현할 수 있고,
$$ P(Y_{1}=1)=P(Y_{2}=1) $$
$$ P(Y_{1}=1)-P(Y_{2}=1)=(\pi_{11}+\pi_{12})-(\pi_{11}+\pi_{21})=\pi_{12}-\pi_{21} $$
따라서
$$ \pi_{12}=\pi_{21} $$
위 식이 성립한다면 주변동질성 Marginal Homogeneity이 존재한다고 할 수 있다.


이와 같이 대응쌍을 이루는 이항형 반응변수일 때,
주변동질성 검정법의 귀무가설은 다음과 같다.
$$ H_{0}: P(Y_{1}=1)=P(Y_{2}=1) $$
$$ H_{0}: \pi_{12}=\pi_{21} $$


댓글

이 블로그의 인기 게시물

Radiomics: Feature selection 3

  Demircioğlu, Aydin PhD  Benchmarking Feature Selection Methods in Radiomics, Investigative Radiology: January 18, 2022 - Volume - Issue - doi: 10.1097/RLI.0000000000000855 High dimensionality of the datasets and small sample sizes are critical problems in radiomics. Therefore, removing redundant features and irrelevant features is needed. Overall, per dataset,  30 different feature selection methods + 10 classifiers + 70 hyperparameter settings After each feature selection method, 1, 2, ..., 64 features were selected. Altogether, 14,700=30✕70 ✕7 models were fitted, each with a 10-fold cross-validation . More complex methods are more unstable than simpler feature selection methods. LASSO performed best when analysing the predictive performance , though it showed only average feature stability . Longer training times and higher computational complexity of the feature selection method do not mean for high predictive performance necessarily. Obtaining a more stable mode...

통계 : Dummy Variable Trap

 Regression model을 만들다 보면, 독립변수로 명목형 변수를 사용할 때가 많다. 지역이나 성별, biomaker유/무 등이 대표적으로 많이 사용되는 명목형 변수로, 특히 medical 저널에서는 성별을 covariate으로 취급하여 성별에 따른 종속변수의 차이를 보고자 할 때가 많다. 명목형 변수들은 Dummy Variable로 바꾸어서 regression model을 만드는데, one hot 인코딩 방식으로 더미 변수들을 만든다. 예를 들면,  ❕ male=0, female=1 ❕ Biomarker유=1, Biomarker무=0 이런식으로 만든다. 이와 같은 binary 데이터들은 더미 변수로 만드는 것도 쉽고 큰 문제가 되지 않는다. one-hot encoding의 이유는, 0과 1 대신 빨간색, 녹색, 파란색을 1,2,3 으로 코딩해버리면, 적합한 모델은 숫자가 더 큰 3을 빨간색보다 더 중요한 인자로 생각하게 되기 때문이다. 학력처럼 순서형이면 각 숫자에 의미가 있지만 여러 컬러처럼 단순 명목형일 때에는 one-hot 인코딩을 해야한다.  (단, 컬러가 연함 - 진함과 같이 순서형이라면 굳이 one-hot 인코딩을 안해도 된다.) one-hot encoding 의 예시는 아래 세 가지 카테고리로 보면 더 명확하게 이해가 된다. (image출처: https://towardsdatascience.com/encoding-categorical-variables-one-hot-vs-dummy-encoding-6d5b9c46e2db) 그럼 binary 말고 여러 카테고리가 있는 변수의 경우는 어떤 식으로 더미 변수를 만들까? Regression 모델을 만들 때에는 k개의 카테고리가 있다면, k-1개의 더미변수를 생성하게 된다. 위 그림에서 Blue일 때, d1, d2, d3 모두 0으로 코딩해도 Red, Green과 차이가 있으므로, d1과 d2만 만들어도 무방하다는 의미이다. 즉, d1과 d2가 0일 때, Blue가...

수리통계학 - 이산형 확률변수의 확률분포

 이산형 확률분포의 종류  - 베르누이분포, 이항분포, 이산형균등분포, 기하분포, 초기하분포, 음이항 분포, 포아송 분포 등 이산형 확률변수의 적률생성함수는 다음과 같은 형태로 표현된다. $$ M_{X}(t)=E(e^{tX})=\sum_{x=0}^{\infty}e^{tx}f(x) $$ 1. 베르누이 분포 베르누이 시행의 확률변수 X의 분포는 X=1의 확률에 의해 정의된다. (X=0 or 1) P=P(X=1)=P(성공 ) 베르누이 시행의 확률질량함수 f(x)는 $$ f(x) = p^{x}(1-p)^{1-x}, x=0, 1 $$ 베르누이 분포의 기댓값과 분산은 다음과 같다. E(X)= p , Var(X)= p (1- p ) 베르누이분포의 적률생성함수는 다음과 같다. $$ M(t)=E(e^{tx})=(1-p)+pe^{t} $$ 적률생성함수 유도 과정은 아래와 같이 진행할 수 있다. $$ M(t)=E(e^{tX})=\sum_{x=0}^{1}e^{tx}f(x)=\sum_{x=0}^{1}e^{tx}p^{x}(1-p)^{1-x}=e^{0}p^{0}(1-p)^{1}+e^{t}p^{1}(1-p)^{0}=(1-p)+pe^{t} $$ 적률생성함수를 t에 대해 1차 미분한 후 t값에 0을 대입하면 평균을 도출할 수 있다. 베르누이 분포의 적률생성함수를 1차 미분하면  $$ M(t)=(1-p)+pe^{t}\Rightarrow M^{'}(t)=\frac{d}{dt}(1-p+pe^{t})=pe^{t} \Rightarrow M^{'}(0)=p $$ 2. 이항분포 베르누이 시행을 독립적으로 n번 반복하여 시행한 경우, 성공한 총 횟수를 X라 정의하면, 이 확률변수 X는 이항분포를 따른다. 이항분포의 확률질량함수 f(x)는 다음과 같다. $$ f(x)=\binom{n}{x}p^{x}(1-p)^{n-x}, x= 0,1,2,...,n $$ 이항분포의 기댓값 E(X)= np , Var(X)= np (1- p ) 이다. 이항분포 ...