Processing math: 100%
  통계 기초 : 확률 분포 - (2) 이항분포의 정규근사 기본 콘텐츠로 건너뛰기

통계 기초 : 확률 분포 - (2) 이항분포의 정규근사

 처음 통계를 접할 때 이해하기 어려웠던 것이 모평균, 표본평균, 표본평균의 평균 개념이었다.


지금 생각해보면 저 단어의 의미를 잘 살펴보기만 하면 크게 어렵지 않은 개념인데, 처음엔 다 어려워 보이듯이 표본평균과 표본평균의 평균이라는 개념이 잘 이해가 가지 않았다. 


표본평균은 표본들의 평균이고, 왜 구하는지 이해가 갔는데 표본평균의 평균은 도대체 왜 구해야하는지 잘 이해가 가지 않았다.


표본평균은 중요한 성질들이 있다. 모집단을 임의로 정한 후, 시뮬레이션을 해보면,

1) 표본평균의 전체평균은 모평균과 같다.

2) 표본평균은 모평균의 비편향추정량(unbiased estimator)이다.

3) 표본평균은 모평균과 서로 다르지만 표본평균의 도수들은 모평균 주위에 많이 몰려 있다.

4) 모든 가능한 표본평균의 분포는 모평균을 중심으로 대칭형이다.


모집단이 매우 크다면, 모든 가능한 표본을 찾아 표본평균의 분포를 찾는 것은 불가능하지만 위 성질들은 ①모집단이 크거나 ②다른 분포형태를 가져도, 변함이 없다.


모평균 µ와 모분산 σ를 갖는 모집단에서 추출한 랜덤표본을 X1 , X2 , ... , Xn 이라 하면, 이들의 표본평균은 다음과 같다.

\overline{X} = \frac{1}{n}(X_{1}+X_{2}+...+X_{n})  

E(\overline{X})=\mu, Var(\overline{X})=\frac{\sigma^{2}}{n}


모집단이 무한모집단이고 표본크기가 충분히 크면 모집단이 어떠한 분포이더라도 표본평균의 분포는 근사적으로 정규분포를 따른다. 이를 중심극한정리(central limit theorem)라 한다. 

중심극한정리에 따르면 모집단의 분포와 관계없이 표본크기가 충분이 크면 표본평균은 정규분포를 따른다. 

\overline{X} \sim N(\mu, \frac{\sigma^{2}}{n})


따라서 이항확률변수의 분포 역시, 표본크기 n이 충분히 큰 경우 근사적으로 정규분포를 따르게 된다.

이항분포 B(n, p)를 따르는 확률변수 X는 n이 충분히 클 때, 근사적으로 평균이 np, 분산이 np(1-p)인 정규분포 N(np, np(1-p))를 따른다.

\frac{X-np}{\sqrt{np(1-p)}} \sim N(0, 1)



댓글

이 블로그의 인기 게시물

통계 : Dummy Variable Trap

 Regression model을 만들다 보면, 독립변수로 명목형 변수를 사용할 때가 많다. 지역이나 성별, biomaker유/무 등이 대표적으로 많이 사용되는 명목형 변수로, 특히 medical 저널에서는 성별을 covariate으로 취급하여 성별에 따른 종속변수의 차이를 보고자 할 때가 많다. 명목형 변수들은 Dummy Variable로 바꾸어서 regression model을 만드는데, one hot 인코딩 방식으로 더미 변수들을 만든다. 예를 들면,  ❕ male=0, female=1 ❕ Biomarker유=1, Biomarker무=0 이런식으로 만든다. 이와 같은 binary 데이터들은 더미 변수로 만드는 것도 쉽고 큰 문제가 되지 않는다. one-hot encoding의 이유는, 0과 1 대신 빨간색, 녹색, 파란색을 1,2,3 으로 코딩해버리면, 적합한 모델은 숫자가 더 큰 3을 빨간색보다 더 중요한 인자로 생각하게 되기 때문이다. 학력처럼 순서형이면 각 숫자에 의미가 있지만 여러 컬러처럼 단순 명목형일 때에는 one-hot 인코딩을 해야한다.  (단, 컬러가 연함 - 진함과 같이 순서형이라면 굳이 one-hot 인코딩을 안해도 된다.) one-hot encoding 의 예시는 아래 세 가지 카테고리로 보면 더 명확하게 이해가 된다. (image출처: https://towardsdatascience.com/encoding-categorical-variables-one-hot-vs-dummy-encoding-6d5b9c46e2db) 그럼 binary 말고 여러 카테고리가 있는 변수의 경우는 어떤 식으로 더미 변수를 만들까? Regression 모델을 만들 때에는 k개의 카테고리가 있다면, k-1개의 더미변수를 생성하게 된다. 위 그림에서 Blue일 때, d1, d2, d3 모두 0으로 코딩해도 Red, Green과 차이가 있으므로, d1과 d2만 만들어도 무방하다는 의미이다. 즉, d1과 d2가 0일 때, Blue가...

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...