수리통계학 - 이산형 확률변수의 확률분포 기본 콘텐츠로 건너뛰기

수리통계학 - 이산형 확률변수의 확률분포

 이산형 확률분포의 종류

 - 베르누이분포, 이항분포, 이산형균등분포, 기하분포, 초기하분포, 음이항 분포, 포아송 분포 등


이산형 확률변수의 적률생성함수는 다음과 같은 형태로 표현된다.

$$ M_{X}(t)=E(e^{tX})=\sum_{x=0}^{\infty}e^{tx}f(x) $$


1. 베르누이 분포

베르누이 시행의 확률변수 X의 분포는 X=1의 확률에 의해 정의된다. (X=0 or 1)

P=P(X=1)=P(성공)

베르누이 시행의 확률질량함수 f(x)는

$$ f(x) = p^{x}(1-p)^{1-x}, x=0, 1 $$

베르누이 분포의 기댓값과 분산은 다음과 같다.

E(X)=p, Var(X)=p(1-p)

베르누이분포의 적률생성함수는 다음과 같다.

$$ M(t)=E(e^{tx})=(1-p)+pe^{t} $$

적률생성함수 유도 과정은 아래와 같이 진행할 수 있다.

$$ M(t)=E(e^{tX})=\sum_{x=0}^{1}e^{tx}f(x)=\sum_{x=0}^{1}e^{tx}p^{x}(1-p)^{1-x}=e^{0}p^{0}(1-p)^{1}+e^{t}p^{1}(1-p)^{0}=(1-p)+pe^{t} $$

적률생성함수를 t에 대해 1차 미분한 후 t값에 0을 대입하면 평균을 도출할 수 있다.

베르누이 분포의 적률생성함수를 1차 미분하면 

$$ M(t)=(1-p)+pe^{t}\Rightarrow M^{'}(t)=\frac{d}{dt}(1-p+pe^{t})=pe^{t} \Rightarrow M^{'}(0)=p $$


2. 이항분포

베르누이 시행을 독립적으로 n번 반복하여 시행한 경우, 성공한 총 횟수를 X라 정의하면, 이 확률변수 X는 이항분포를 따른다.

이항분포의 확률질량함수 f(x)는 다음과 같다.

$$ f(x)=\binom{n}{x}p^{x}(1-p)^{n-x}, x= 0,1,2,...,n $$

이항분포의 기댓값 E(X)=np, Var(X)=np(1-p) 이다.

이항분포 B(n, p)를 따르는 확률변수의 적률생성함수는 다음과 같다.

$$ M(t)=\sum_{x=0}^{n}e^{tx}f(x)=\sum_{x=0}^{n}e^{tx}\binom{n}{x}p^{x}(1-p)^{n-x}=[(1-p)+pe^{t}]^{n} $$

만약 n이 1이라면 베르누이분포의 적률생성함수가 된다.


3. 포아송분포

포아송분포는 이항분포에서 반복횟수인 n이 충분히 크고 성공률 p가 0에 가까울 정도로 작으면서 평균이 np=⋋일 때의 분포이다.

포아송분포는 이항분포와 밀접한 관계가 있는데, p의 값이 매우 작고 평균이 일정할 때 n이 커지면 이항분포는 포아송분포로 표현된다.

n ⇨ ∞ , p ⇨ 0 이며, np=⋋라고 가정하면 아래 식이 성립한다.

$$ \displaystyle \lim_{ n\to \infty}\binom{n}{x}p^{x}(1-p)^{n-x} $$

위 식을 풀어보면,

$$ \displaystyle \lim_{ n\to \infty}\binom{n}{x}p^{x}(1-p)^{n-x}=\displaystyle \lim_{ n\to \infty}\frac{n(n-1)\cdots (n-x+1)}{x!}(\frac{\lambda}{n})^{x}(1-\frac{\lambda}{n})^{n-x} $$

또 위의 식을 풀어보면 다음과 같다.

$$ \frac{\lambda^{x}}{x!}\displaystyle \lim_{ n\to \infty}(1-\frac{\lambda}{n})^{n}(1-\frac{\lambda}{n})^{-x}(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1-\frac{x-1}{n}) $$

위 식에서 다음 성질을 만족하기 때문에

$$ \displaystyle \lim_{ n\to \infty}(1-\frac{\lambda}{n})^{n}=\displaystyle \lim_{ n\to \infty}[(1-\frac{\lambda}{n})^{\frac{n}{-\lambda}}]^{-\lambda}=e^{-\lambda} $$

다음과 같이 이항분포가 n이 매우 커지고 p값이 작을 때 포아송분포로 근사함을 표현할 수 있다.

$$ \lim_{ n\to \infty}\binom{n}{x}p^{x}(1-p)^{n-x}=\frac{\lambda^{x}e^{-\lambda}}{x!} $$

포아송분포의 확률질량함수는 다음과 같이 표현할 수 있다.

$$ f(x)=P(X=x)=\frac{\lambda^{x}e^{-\lambda}}{x!}, x=0,1,2,\cdots (\lambda>0) $$

확률질량함수를 통해 포아송분포의 적률생성함수를 아래와 같이 도출할 수 있다.

$$ M(t)=\sum_{x=0}^{\infty}e^{tx}\frac{\lambda^{x}e^{-\lambda}}{x!}=e^{-\lambda}\sum_{x=0}^{\infty}\frac{(\lambda e^{t})^{x}}{x!} $$

이를 테일러 전개를 이용하여 정리하면 

$$ M(t)=e^{-\lambda}\sum_{x=0}^{\infty}\frac{(\lambda e^{t})^{x}}{x!}=e^{\lambda(e^{t}-1)} $$ 

위 적률생성함수를 t에 대해 1차 미분한 후 t에 0을 대입하면, 포아송분포의 기댓값을 구할 수 있다.

댓글

이 블로그의 인기 게시물

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. $$ P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 $$ 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. $$ P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n $$ 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...

Odds Ratio and Relative Risk ; 오즈비와 상대위험도 part. 2

 지난 글에서 2X2 분할표에서 많이 사용되는 오즈비와 상대위험도의 개념에 대해서 살펴보았다. 그 중에서도 지난 글에서는 오즈비를 사용할 수밖에 없는 경우에 대해 살펴보았다.  상대위험도가 직관적으로 이해하기 쉽고 위험비에 대한 쉬운 해석을 가능하게 하지만, 그럼에도 불구하고 보건 or 의학 계열에서 오즈비를 많이 사용 할 수밖에 없는 이유에 대해 살펴보았다. 또한 오즈비와 상대위험도는 가끔 동일하게 해석되기도 한다. (자세한 내용은 이전 글로..) 그럼 이번 글에서는 오즈비와 상대위험도를 동일하게 해석할 수 있는 경우 에 대해 살펴보도록 하겠다. 먼저 다음과 같은 오즈비의 특성을 이해해야 한다. 오즈비의 중요 특성: 상대적인 위험도를 과장하는 측면 이 있다. 이는 굉장히 중요한 오즈비의 특성인데, Relative Risk 값보다 항상 큰 값을 가진다. 그리고 이는 해당 Event가 흔하게 일어날 수록 더욱 더 과장 된다. 📋예를 들어 보자. 따듯한 차를 마셨을 때와 방안 온도의 차를 마셨을 때 체온이 상승하는지 아니면 그대로 유지되는지에 대해 조사하고 다음과 같은 분할표를 얻었다.   체온 상승 유지 Total Warm tea 90 10 100 Normal temp 20 180 200 먼저 Relative Risk 상대위험도 를 구해보자. $$ \frac{90/100}{20/200} = 9 $$ 이번엔 Odds Ratio 오즈비 를 구해보자. (유도과정은 이전 글 참고) $$ \frac{90 * 180}{20 * 10} = 81 $$ 이번엔 방금 구한 상대위험도와 오즈비를 해석해보자. 📉 RR : 상대위험도는 9로, 이는 따듯한 차를 마신다면 체온이 상승할 확률이 방안 온도의 차를 마셨을 때보다 체온이 상승할 확률...