Processing math: 100%
  Radiomics: Feature selection 기본 콘텐츠로 건너뛰기

Radiomics: Feature selection

Radiomics에서 Feature를 선택하는 것은 핵심 중의 핵심이다. 

열심히 영상을 다듬고 영상에 대한 여러 value를 뽑아 놓아도 feature selection을 잘못하면 그동안의 노력이 물거품이 되기 때문이다.


Feature selection에는 여러 가지 방안들이 제시되어 왔는데 가장 많이 사용되는 방법들을 정리해보고자 한다.


In omics experiments, one of the ultimate goals is the identification of features(biomarkers) that are different between treatment groups.

One of the very common problems in omics data is that the sample size is small but huge number of features which can lead to over-fitting.


What can be alternative methods to overcome this problem?


The first paradigm

 - LASSO : based on classification approaches and compares the least absolute shrinkage and selection operator.

 - Ridge regression

 - Elastic Net feature selection methods


The second paradigm

 - using a linear models framework : individual features are modeled separately ignoring the correlation structure among features.

 

Omics data analysing 순서

    ⇨ original feature subsets ⇨ classification approach


Pre-screening 

1. t-test

2. Hardy-Weinberg equilibrium tests

3. non-statistical biological considerations

⇨ These methods help the efficient classification of samples into groups, rather than feature selection.



This paper uses the Type I and Type II errors to measure the accuracy(?)


Simulation 

 - 100 samples, 12 significant features out of 1,000 features comparing the performance of LASSO, Elastic Net, ridge regression, principal components regression, and other methods used for feature selection.

 👍 Elastic Net: showed the lowest mean squared error of prediction



biosignature for Lyme disease prediction 

- 202 treatment, 259 control group sample size. 

    • The number of features before pre-screening = 2,262

    • The number of features after pre-screening = 95

- LASSO, Classification Tree, Linear discriminant analysis  were applied.

    • LASSO: performed the best in ROC

    • Elastic Net: had lower MSEP than SVM, superior to stepwise selection.



LASSO, ridge regression & Elastic Net

 - penalised regression models.

 ① Ridge regression: closed form solution for the standard linear models with normal errors and results in shrunk regression coefficients (none of which is equal to zero)

    ⇨ Ridge regression can be used as a prediction tool, but not as a feature selector.

 LASSO: does not allow a closed form solution. it uses shrinkage to estimate which set of the regression coefficients have a value of zero and can therefore be eliminated.

    ⇨ One of the limitations of this method is that the number of variables that can be selected has to be smaller or equal to the sample size n.

    ⇨ LASSO often select only a single feature in a set of highly correlated features.

 ③ Elastic Net: addressed the drawbacks of the LASSO and ridge regression methods.

This method is a weighted combination of both LASSO and ridge regression penalties.



위 내용을 작성할 때 Kirpich, Alexander et al. “Variable selection in omics data: A practical evaluation of small sample sizes.” PloS one vol. 13,6 e0197910. 21 Jun. 2018 해당 논문을 참고하였음.





댓글

이 블로그의 인기 게시물

통계 : Dummy Variable Trap

 Regression model을 만들다 보면, 독립변수로 명목형 변수를 사용할 때가 많다. 지역이나 성별, biomaker유/무 등이 대표적으로 많이 사용되는 명목형 변수로, 특히 medical 저널에서는 성별을 covariate으로 취급하여 성별에 따른 종속변수의 차이를 보고자 할 때가 많다. 명목형 변수들은 Dummy Variable로 바꾸어서 regression model을 만드는데, one hot 인코딩 방식으로 더미 변수들을 만든다. 예를 들면,  ❕ male=0, female=1 ❕ Biomarker유=1, Biomarker무=0 이런식으로 만든다. 이와 같은 binary 데이터들은 더미 변수로 만드는 것도 쉽고 큰 문제가 되지 않는다. one-hot encoding의 이유는, 0과 1 대신 빨간색, 녹색, 파란색을 1,2,3 으로 코딩해버리면, 적합한 모델은 숫자가 더 큰 3을 빨간색보다 더 중요한 인자로 생각하게 되기 때문이다. 학력처럼 순서형이면 각 숫자에 의미가 있지만 여러 컬러처럼 단순 명목형일 때에는 one-hot 인코딩을 해야한다.  (단, 컬러가 연함 - 진함과 같이 순서형이라면 굳이 one-hot 인코딩을 안해도 된다.) one-hot encoding 의 예시는 아래 세 가지 카테고리로 보면 더 명확하게 이해가 된다. (image출처: https://towardsdatascience.com/encoding-categorical-variables-one-hot-vs-dummy-encoding-6d5b9c46e2db) 그럼 binary 말고 여러 카테고리가 있는 변수의 경우는 어떤 식으로 더미 변수를 만들까? Regression 모델을 만들 때에는 k개의 카테고리가 있다면, k-1개의 더미변수를 생성하게 된다. 위 그림에서 Blue일 때, d1, d2, d3 모두 0으로 코딩해도 Red, Green과 차이가 있으므로, d1과 d2만 만들어도 무방하다는 의미이다. 즉, d1과 d2가 0일 때, Blue가...

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

Odds Ratio and Relative Risk ; 오즈비와 상대위험도

  Odds Ratio 는 임상에서 매우 많이 사용되는 개념이다. 그러나 'Odds' 라는 개념이 직관적으로 잘 와닿지 않기 때문에 흔히 오용되기도 하는 개념이라 가장 먼저 잡고가야 할 주제로 삼았다.   오즈비는 범주형 자료에서 사용되는데, 오즈비를 보면서 가장 많이 접하게 될  2X2 분할표는 다음과 같이 생겼다.   Event Normal Total Exposed A B A + B Non-exposed C D C + D 흔히 하는 실수가 오즈비(Odds Ratio)를 해석할 때, 상대위험도(Relative risk)를 해석하듯이 한다는 점이다. 따라서 오즈비와 상대위험도의 각 개념에 대해서 살펴보고 넘어가도록 하자.   ❗Odds Ratio와 Relative Risk의 공통점 : 상대적인 비율 을 나타낸다. Public health / Medical 에서 Odds Ratio or Relative Risk를 사용하는 이유 - 어떤 조건에서 더 위험한지를 수치적으로 나타내기 위해서 사용 한다. 예를 들면, "흡연(조건)"을 하는 사람은 비흡연자에 비해 "폐암(Event)" 발생에 있어서 몇 배가 더 위험한가? 와 같은 질문에 대한 해답으로 많이 사용된다.   ✅위와 같은 2X2 이차원 분할표에서 Odds Ratio (오즈비) 의 수식적 정의 는 다음과 같다. P1 = A/(A+B) ; P2 = C/(C+D) Odds1 = P1/(1-P1) ; Odds2 = P2/(1-P2) Odds Ratio = Odds1/Odds2 = A*D/B*C ✅ 한편 2X2 분할표에서 Relative Risk (상대위험도) 의 수식적 정의 는 ...