이항자료에 대한 일반화선형모형 GLM part.1 기본 콘텐츠로 건너뛰기

이항자료에 대한 일반화선형모형 GLM part.1

 회귀모형을 적합할 때 적합하고자 하는 모형의 반응변수가 Binary data라면 어떻게 모형을 만들어야 할까?


반응변수가 두 가지의 범주를 갖고 있는 경우가 참 많다.

예를 들면..

(예, 아니오) (성공, 실패) (양성, 음성)


이항반응변수를 Y라 표시하고, 성공을 1, 실패를 0이라 나타내면,

반응변수 Y의 분포는 성공에 대한 확률 P(Y=1)=π 와 실패에 대한 확률 P(Y=0)=(1-π)로 표현할 수 있다.


이 분포의 평균 E(Y)=π 이며, n개의 서로 독립적인 이항반응변수의 관측값으로부터 관측된 성공횟수는 nπ를 모수로 갖는 이항분포를 따른다.

모수: n, π


이항반응변수를 갖는 값들을 회귀모델을 만드는 방법은 크게 두 가지이다.


1. 선형확률모형

먼저 이항반응변수를 갖는 값들을 보통선형모형을 이용해 항등연결함수를 사용해보도록 하겠다.

$$ P(Y=1)=\alpha+\beta_{1}x_{1}+\cdots +\beta_{p}x_{p} $$

이 모형은 성공확률이 설명변수에 따라 선형적으로 변하므로 Linear probability model 라고 부른다.

다른 변수가 고정되어 있을 때, x1이 한 단위 변한다면 모수 Beta1은 확률 P(Y=1)의 변화량을 의미한다.

한계점: 확률은 0과 1 사이의 값. 선형함수는 실수 전체에 걸쳐 값을 가질 수 있음. 


2. 로지스틱 회귀모형

P(Y=1) 와 x의 관계는 비선형 형태이다. x의 변화량은 P(Y=1)가 0이나 1에 가까이 있을 때, 중앙일 때보다 영향을 덜 미치게 된다. 

로지스틱 회귀함수 Logistic regression function은 다음과 같이 표현할 수 있다.

$$ P(Y=1) = \frac{exp(\alpha+\beta x)}{1+exp(\alpha+\beta x)} $$

모수 베타는 곡선이 증가하거나 감소하는 속도를 결정함.


만일 설명변수가 여러개라면 다음과 같이 표현 가능하다.

$$ log[\frac{P(Y=1)}{1-P(Y=1)}]=\alpha+\beta_{1}x_{1}+\cdots +\beta_{p}x_{p} $$


로지스틱 회귀모형은 GLM의 특별한 경우다.

랜덤성분은 이항분포

연결함수는 π=P(Y=1) 의 로짓변환인 log[π/(1-π)] = logit(π)

댓글

이 블로그의 인기 게시물

Radiomics: Feature selection 3

  Demircioğlu, Aydin PhD  Benchmarking Feature Selection Methods in Radiomics, Investigative Radiology: January 18, 2022 - Volume - Issue - doi: 10.1097/RLI.0000000000000855 High dimensionality of the datasets and small sample sizes are critical problems in radiomics. Therefore, removing redundant features and irrelevant features is needed. Overall, per dataset,  30 different feature selection methods + 10 classifiers + 70 hyperparameter settings After each feature selection method, 1, 2, ..., 64 features were selected. Altogether, 14,700=30✕70 ✕7 models were fitted, each with a 10-fold cross-validation . More complex methods are more unstable than simpler feature selection methods. LASSO performed best when analysing the predictive performance , though it showed only average feature stability . Longer training times and higher computational complexity of the feature selection method do not mean for high predictive performance necessarily. Obtaining a more stable mode...

통계 : Dummy Variable Trap

 Regression model을 만들다 보면, 독립변수로 명목형 변수를 사용할 때가 많다. 지역이나 성별, biomaker유/무 등이 대표적으로 많이 사용되는 명목형 변수로, 특히 medical 저널에서는 성별을 covariate으로 취급하여 성별에 따른 종속변수의 차이를 보고자 할 때가 많다. 명목형 변수들은 Dummy Variable로 바꾸어서 regression model을 만드는데, one hot 인코딩 방식으로 더미 변수들을 만든다. 예를 들면,  ❕ male=0, female=1 ❕ Biomarker유=1, Biomarker무=0 이런식으로 만든다. 이와 같은 binary 데이터들은 더미 변수로 만드는 것도 쉽고 큰 문제가 되지 않는다. one-hot encoding의 이유는, 0과 1 대신 빨간색, 녹색, 파란색을 1,2,3 으로 코딩해버리면, 적합한 모델은 숫자가 더 큰 3을 빨간색보다 더 중요한 인자로 생각하게 되기 때문이다. 학력처럼 순서형이면 각 숫자에 의미가 있지만 여러 컬러처럼 단순 명목형일 때에는 one-hot 인코딩을 해야한다.  (단, 컬러가 연함 - 진함과 같이 순서형이라면 굳이 one-hot 인코딩을 안해도 된다.) one-hot encoding 의 예시는 아래 세 가지 카테고리로 보면 더 명확하게 이해가 된다. (image출처: https://towardsdatascience.com/encoding-categorical-variables-one-hot-vs-dummy-encoding-6d5b9c46e2db) 그럼 binary 말고 여러 카테고리가 있는 변수의 경우는 어떤 식으로 더미 변수를 만들까? Regression 모델을 만들 때에는 k개의 카테고리가 있다면, k-1개의 더미변수를 생성하게 된다. 위 그림에서 Blue일 때, d1, d2, d3 모두 0으로 코딩해도 Red, Green과 차이가 있으므로, d1과 d2만 만들어도 무방하다는 의미이다. 즉, d1과 d2가 0일 때, Blue가...

수리통계학 - 이산형 확률변수의 확률분포

 이산형 확률분포의 종류  - 베르누이분포, 이항분포, 이산형균등분포, 기하분포, 초기하분포, 음이항 분포, 포아송 분포 등 이산형 확률변수의 적률생성함수는 다음과 같은 형태로 표현된다. $$ M_{X}(t)=E(e^{tX})=\sum_{x=0}^{\infty}e^{tx}f(x) $$ 1. 베르누이 분포 베르누이 시행의 확률변수 X의 분포는 X=1의 확률에 의해 정의된다. (X=0 or 1) P=P(X=1)=P(성공 ) 베르누이 시행의 확률질량함수 f(x)는 $$ f(x) = p^{x}(1-p)^{1-x}, x=0, 1 $$ 베르누이 분포의 기댓값과 분산은 다음과 같다. E(X)= p , Var(X)= p (1- p ) 베르누이분포의 적률생성함수는 다음과 같다. $$ M(t)=E(e^{tx})=(1-p)+pe^{t} $$ 적률생성함수 유도 과정은 아래와 같이 진행할 수 있다. $$ M(t)=E(e^{tX})=\sum_{x=0}^{1}e^{tx}f(x)=\sum_{x=0}^{1}e^{tx}p^{x}(1-p)^{1-x}=e^{0}p^{0}(1-p)^{1}+e^{t}p^{1}(1-p)^{0}=(1-p)+pe^{t} $$ 적률생성함수를 t에 대해 1차 미분한 후 t값에 0을 대입하면 평균을 도출할 수 있다. 베르누이 분포의 적률생성함수를 1차 미분하면  $$ M(t)=(1-p)+pe^{t}\Rightarrow M^{'}(t)=\frac{d}{dt}(1-p+pe^{t})=pe^{t} \Rightarrow M^{'}(0)=p $$ 2. 이항분포 베르누이 시행을 독립적으로 n번 반복하여 시행한 경우, 성공한 총 횟수를 X라 정의하면, 이 확률변수 X는 이항분포를 따른다. 이항분포의 확률질량함수 f(x)는 다음과 같다. $$ f(x)=\binom{n}{x}p^{x}(1-p)^{n-x}, x= 0,1,2,...,n $$ 이항분포의 기댓값 E(X)= np , Var(X)= np (1- p ) 이다. 이항분포 ...