ANCOVA : 개념과 활용, 오용 (1) 기본 콘텐츠로 건너뛰기

ANCOVA : 개념과 활용, 오용 (1)

 ANCOVA 는 Analysis of Covariance 의 abbreviation 으로 "ANOVA + Linear regression" 을 합친 개념이라고들 많이 배운다.


 이번 주제로 ANCOVA를 정한 이유는 ANCOVA가 medical research에서 너무나도 광범위하게 misuse 되고 있기 때문이다. 이러한 사례를 모은 관련 논문들도 아주 많이 나왔지만 아직도 medical research 분야에서 잘못 사용되고 있는 경우가 매우 많다.


가장 많은 오류 중 한 가지는 confounding variable 일 수 있는 age와 같은 변수들이 교란변수임에도 단지 "보정 (control)"을 목적으로 적절한 변환이나 고려 없이 마구잡이(?)식으로 투입된다는 점이 있다.


Miller & Chapman (2001) 의 "Misunderstanding Analysis of Covariance" 논문에는 다음과 같은 문장이 있다.

ANCOVA was developed to improve the power of the test of the independent variable, not to "control" for anything.

많은 medical research에서 ANCOVA를 '보정 control' 을 목적으로 사용하는데, Miller & Chapman이 논문에서 언급했듯이, ANCOVA는 사실 어떤 변수를 보정하기 위한 목적으로 만들어진 것이 아니라 독립변수의 검정력을 향상시키고자 발전했다고 할 수 있다.


그럼 ANCOVA를 어떤 식으로 이해하면 좋을까? 이에 대해서 Miller & Chapman은 다음과 같이 저술하였다.

It is helpful here to place ANOVA and ANCOVA in the more general framework of multiple regression and correlation, understood within the general linear model.

ANCOVA를 다중회귀, General Linear Model (=GLM) 의 틀 안에서 이해하는 것이다.



Covariates (공변량) 은 Y(=종속변수), X(=독립변수)와 모두 연관성이 있는 변수이다.


댓글

이 블로그의 인기 게시물

Radiomics: Feature selection 3

  Demircioğlu, Aydin PhD  Benchmarking Feature Selection Methods in Radiomics, Investigative Radiology: January 18, 2022 - Volume - Issue - doi: 10.1097/RLI.0000000000000855 High dimensionality of the datasets and small sample sizes are critical problems in radiomics. Therefore, removing redundant features and irrelevant features is needed. Overall, per dataset,  30 different feature selection methods + 10 classifiers + 70 hyperparameter settings After each feature selection method, 1, 2, ..., 64 features were selected. Altogether, 14,700=30✕70 ✕7 models were fitted, each with a 10-fold cross-validation . More complex methods are more unstable than simpler feature selection methods. LASSO performed best when analysing the predictive performance , though it showed only average feature stability . Longer training times and higher computational complexity of the feature selection method do not mean for high predictive performance necessarily. Obtaining a more stable mode...

통계 기초 : 확률 분포 - (1) 이항분포

Binomial distribution 이항분포에 앞서 베르누이분포가 있다. 모든 가능한 결과가 두 가지인 실험(표본공간이 {불량품, 양호품},{찬성, 반대} 등)을 베르누이 시행(Bernoulli trial)이라 한다. 성공확률을 p 라고 할 때, '성공'이면 1, '실패'면 0으로 대응시키는 확률변수를 베르누이 확률변수라 한다. 베르누이 확률변수 X의 확률분포는 다음과 같이 정의할 수 있다. $$ P(X=x) = p^{x}(1-p)^{1-x}, x=0,1 $$ 따라서, X=0인 경우에는 P(X=0) = (1-p)이고, X=1인 경우에는 P(X=1) = p가 된다. 베르누이분포의 평균은 E(X)=p, Var(X)=p(1-p) 이다. 이처럼 동일한 성공확률을 가진 베르누이 시행 을 독립적 으로 반복 하여 시행할 때, 'X=성공횟수'의 분포를 이항분포(binomial distribution)이라 한다. 성공확률이 p인 베르누이 시행을 n번 독립적으로 반복 시행할 때, '성공횟수(=X)'가 x일 확률은 다음과 같이 표시할 수 있다. $$ P(X=x) = (\frac{n}{x})p^{x}(1-p)^{n-x}, x=0,1,2, ..., n $$ 이항분포의 평균은 E(X)=np, 분산은 Var(X)=np(1-p) 이다. 증명은  https://proofwiki.org/wiki/Variance_of_Binomial_Distribution  참고하면 된다. 여기에서 n , p 를 이항분포의 모수(parameter)라 한다. 만약 n=1이라면, 이항분포 B ( n , p )는 '1(성공)'의 확률이 p 인 베르누이분포이다. 참고로 모수는 모집단의 특성값으로, 평균, 분산, 성공확률 등을 예시로 들 수 있다.

통계 : Dummy Variable Trap

 Regression model을 만들다 보면, 독립변수로 명목형 변수를 사용할 때가 많다. 지역이나 성별, biomaker유/무 등이 대표적으로 많이 사용되는 명목형 변수로, 특히 medical 저널에서는 성별을 covariate으로 취급하여 성별에 따른 종속변수의 차이를 보고자 할 때가 많다. 명목형 변수들은 Dummy Variable로 바꾸어서 regression model을 만드는데, one hot 인코딩 방식으로 더미 변수들을 만든다. 예를 들면,  ❕ male=0, female=1 ❕ Biomarker유=1, Biomarker무=0 이런식으로 만든다. 이와 같은 binary 데이터들은 더미 변수로 만드는 것도 쉽고 큰 문제가 되지 않는다. one-hot encoding의 이유는, 0과 1 대신 빨간색, 녹색, 파란색을 1,2,3 으로 코딩해버리면, 적합한 모델은 숫자가 더 큰 3을 빨간색보다 더 중요한 인자로 생각하게 되기 때문이다. 학력처럼 순서형이면 각 숫자에 의미가 있지만 여러 컬러처럼 단순 명목형일 때에는 one-hot 인코딩을 해야한다.  (단, 컬러가 연함 - 진함과 같이 순서형이라면 굳이 one-hot 인코딩을 안해도 된다.) one-hot encoding 의 예시는 아래 세 가지 카테고리로 보면 더 명확하게 이해가 된다. (image출처: https://towardsdatascience.com/encoding-categorical-variables-one-hot-vs-dummy-encoding-6d5b9c46e2db) 그럼 binary 말고 여러 카테고리가 있는 변수의 경우는 어떤 식으로 더미 변수를 만들까? Regression 모델을 만들 때에는 k개의 카테고리가 있다면, k-1개의 더미변수를 생성하게 된다. 위 그림에서 Blue일 때, d1, d2, d3 모두 0으로 코딩해도 Red, Green과 차이가 있으므로, d1과 d2만 만들어도 무방하다는 의미이다. 즉, d1과 d2가 0일 때, Blue가...